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§ Introduction

 Observations suggest that the explosions are asymmetry
(polarization, pulsar kick, images of 1987A).

 Multi dimensional simulations indicate that the accretion
flows in SNe are unstable against asymmetric pertrubations.

 Hydrodynamical instability is one of the key
     ingredients of asymmetry (and possibly explosion).

       Known instability mechanisms :
        convection,
        advection-acoustic cycle (Foglizzo 2000, 2001, 2002),
        ….



§ This study
          We investigated the stability systematically.

1. First, we found steady solutions which mimic the accretion
flow with a stalled shock in the core-collapse supernovae,
assuming that the neutrino luminosity and the mass
accretion rate are constant parameters.

2. Then the stability of the steady solutions was investigated
by global analysis.

 The realistic equation of state by Shen is employed.

 We took into accout both neutrino heating and cooling,
      adopting the realistic reaction rates by Bruenn (1985).



§ Assumptions
    We consider the region between shock and neutrino-sphere.

1. Steady flows are spherically symmetric.
2. Neutrino thin approximation is adopted

(i.e., neutrino transfer is not solved).
3. Newtonian gravity is adopted.

      Boundary conditions
a) Flow outside of the shock is cold free-fall one.
b) At the inner boundary (neutrino-sphere), the perturbation of

the radial velocity vanishes.

 Perturbations are expanded in the spherical harmonics, and
radial dependence of the perturbations are solved globally.



§ Steady solutions

 When the neutrino luminosity
exceeds the critical value
(12.46•1052[ergs/s],

     for accretion rate 1.0 [M/s] ),
there exist no steady solutions
(Burrows & Goshy 1993).

 When the neutrino luminosity is
larger than about 4.0•1052[ergs/s]
(for accretion rate 1.0 [M/s]),
there is the heating layer where the
entropy gradient is negative in the
radial direction.



§ Results    growth rates and frequencies

1. 　Lν < 1•1052[ergs/s]        No unstable mode.
2. 2 < Lν < 4•1052[ergs/s]    l =2,3 oscillatory modes grow (advection-acoustic).
3. 3 < Lν < 7•1052[ergs/s]    l =1,2 oscillatory modes grow (advection-acoustic).
4.  Lν > 7•1052[ergs/s] 　       Non-oscillatory modes grow (convection).
                                          　      l =5 -11 grows fastest (c.f. Foglizzo et al. 2006).



Frequencies for oscillatory modes

 Frequencies are
consistent with those
predicted by the
advection-acoustic cycle.

 The oscillatory modes
are likely to be the
advection-acoustic cycle
(Foglizzo et al. 2007).

 The stability of the oscillatory
modes are affected quantitatively
by the inner boundary condition
(whereas non-oscillatory modes
are not).



Eigen-functions of
non-oscillatory modes



Growth rates for convective modes



§ Summary

          For  mass accretion rate 1.0 [M/s],

1)  Lν > 12.46 •1052[ergs/s]  No steady solutions.
2)  Lν > 4•1052[ergs/s]          Heating region emerges.

1.  Lν < 1•1052[ergs/s]         No unstable mode.
2. 2 < Lν < 4•1052[ergs/s]    l =2,3 advection-acoustic modes grow.
3. 3 < Lν < 7•1052[ergs/s]    l =1,2 advection-acoustic modes grow.
4.  Lν > 7•1052[ergs/s]          Convective modes grow (l =5-11 grow fastest).

 Even when the radial gradient of entropy is negative, the convection
does not always take place because of the advection
(Foglizzo et al. ’06).

 The advection-acoustic cycle and the convection become important
in different aspects.


